Participation in a Limited-Entry Fishery: An Options Approach

David Tomberlin (NMFS, Santa Cruz)
Valentina Bosetti (FEEM, Milan)

NMFS Economists' Mtg. October 2004

Participation in the CA salmon fishery

Overview

A model of the fish/exit decision

A model of the fish/idle/exit decision

- Tests of models' predictive power
- Assessment and conclusions

- When will a fisherman exit a fishery?
- When would a fisherman exit if he is maximizing expected profit?
- Can simple financial models predict participation?
- Why do we care?

- Uncertainty (price, catch, regulation, etc.)
- Irreversibility or at least costliness
- Possibility of delay
- → Real options

California Salmon Fleet Average Revenue

California Salmon Fleet Average Revenue

1)
$$dR = \alpha R dt + \sigma R dz$$
 $where R = revenue flow$
 $\alpha = drift$
 $\sigma = volatility$

1)
$$dR = \alpha R dt + \sigma R dz$$

 $where R = revenue flow$
 $\alpha = drift$
 $\sigma = volatility$

2)
$$R-C+\alpha R\frac{\partial F(R,t)}{\partial R}+\frac{1}{2}\sigma^{2}R^{2}\frac{\partial^{2}F(R,t)}{\partial R^{2}}-\rho F(R,t)+\frac{\partial F(R,t)}{\partial t}=0$$

where $C=$ operating costs

 $F=$ project + option value

 $\rho=$ discount rate

1)
$$dR = \alpha R dt + \sigma R dz$$

where $R =$ revenue flow
 $\alpha =$ drift
 $\sigma =$ volatility

2)
$$R - C + \alpha R \frac{\partial F(R,t)}{\partial R} + \frac{1}{2}\sigma^2 R^2 \frac{\partial^2 F(R,t)}{\partial R^2} - \rho F(R,t) + \frac{\partial F(R,t)}{\partial t} = 0$$

where $C = operating\ costs$
 $F = flow + option\ value$
 $\rho = discount\ rate$

3a)
$$F(\infty,t) = \frac{R}{\rho - \alpha} - \frac{C}{\rho}$$

$$3b) \quad F(R_x, t) = S$$

$$3c)$$
 $F(0,t) = S$
 $where S = salvage value$

Project Value With and Without Exit Option Value

Data and parameters

SUMMARY OF INPUT DATA (FLEET AVERAGES IN \$000s)

YEAR	L	С	R	ALPHA	SIGMA
1988	398	9438	21735	0.178	0.667
1989	398	6078	6896	-0.021	0.831
1990	368	5884	6999	0.162	0.627
1991	335	4819	6068	0.039	0.583
1992	269	4694	4788	-0.060	0.558
1993	260	5288	5325	-0.062	0.558
1994	260	5266	7156	-0.101	0.515
1995	260	5335	10837	-0.099	0.516
1996	410	4342	6462	-0.009	0.320
1997	298	4629	9170	0.039	0.348
1998	435	4224	4777	-0.034	0.435
1999	260	4706	11389	0.124	0.538
2000	285	4600	13595	0.134	0.538
2001	423	3279	6728	-0.009	0.615
2002	260	4125	10118	-0.010	0.614

Solution by minimization

Explicit solution of PDE → value-matching and smooth pasting conditions:

4)
$$\frac{R}{\rho - \alpha} - \frac{C}{\rho} + AR^{\beta} - S = 0$$

$$5) \quad \beta A R^{\beta - 1} + \frac{1}{\rho - \alpha} = 0$$

Goal: Find A_x and R_x

Method: Nonlinear least squares

Testing the model

Comparison of Models' Predictive Power

	Option Model		NPV Model	
	Boat-Years	Pounds (millions)	Boat-Years	Pounds (millions)
Predicted A, Observed A	7782	77.5	3623	55.7
Predicted A, Observed X	300	1.4	105	8.0
Predicted X, Observed A	3393	2.4	7552	24.2
Predicted X, Observed X	469	1.8	664	0.8
Correct Predictions	69%	95%	36%	69%

With option to suspend operations....

1)
$$K_A R_I^{\beta_2} + K_X R_I^{\beta_1} - \frac{L}{\rho} + S - T_I = \frac{R_I}{\rho - \alpha} - \frac{C}{\rho} - \frac{L}{\rho} + K_I R_I^{\beta_1}$$

1')
$$\beta_2 K_A R_I^{\beta_2 - 1} + \beta_1 K_X R_I^{\beta_1 - 1} = \frac{1}{\rho - \alpha} + \beta_1 K_I R_I^{\beta_1 - 1}$$

2)
$$\frac{R_A}{\rho - \alpha} - \frac{C}{\rho} - \frac{L}{\rho} + K_I R_A - S - T_A = K_A R_A^{\beta_2} + K_X R_A^{\beta_1} - \frac{L}{\rho}$$

2')
$$\frac{1}{\rho - \alpha} + \beta_1 K_I R_A^{\beta_1 - 1} = \beta_2 K_A R_A^{\beta_2 - 1} + \beta_1 K_X R_A^{\beta_1 - 1}$$

3)
$$K_A R_X^{\beta_2} + K_X R_X^{\beta_1} - \frac{L}{\rho} = -S_X$$

3')
$$\beta_2 K_A R_X^{\beta_2-1} + \beta_1 K_X R_X^{\beta_1-1} = 0$$

Numerical issues

- Problems with NLLS
 - Non-convergence
 - Multiple solutions
 - Imaginary solutions
- Alternatives
 - Finite differences
 - Monte Carlo

Estimated action thresholds compared

Two competing models

Comparison of Models with Idle Option

	Option	Naïve	Option/Naïve
Predicted A, Observed A	4,138	8,388	4,138
Predicted A, Observed M	721	2,787	721
Predicted A, Observed X	96	769	96
Predicted I, Observed A	3,376	2,424	5,800
Predicted I, Observed M	1,404	33,972	35,376
Predicted I, Observed X	393	2,334	2,727
Predicted X, Observed A	874	0	874
Predicted X, Observed M	662	0	662
Predicted X, Observed X	280	32,949	33,229
#Predictions	11,944	83,623	83,623
Correct Predictions	49%	90%	87%

Assessment and conclusions

- Real options models--reasonable representations of participation decisions?
- Model performance
- Data holes: operating costs, opportunity costs
- Structural improvements:
 - Process specification and estimation
 - Parameter uncertainty & memory
 - Stochastic salvage and switching
 - Individual-based model
 - Multi-factor models
 - Variable effort